ON DIVISIBILITY OF THE CLASS NUMBER h^{+} OF THE REAL CYCLOTOMIC FIELDS OF PRIME DEGREE l

STANISLAV JAKUBEC

Abstract

In this paper, criteria of divisibility of the class number h^{+}of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ of a prime conductor p and of a prime degree l by primes q the order modulo l of which is $\frac{l-1}{2}$, are given. A corollary of these criteria is the possibility to make a computational proof that a given q does not divide h^{+}for any p (conductor) such that both $\frac{p-1}{2}, \frac{p-3}{4}$ are primes. Note that on the basis of Schinzel's hypothesis there are infinitely many such primes p.

Introduction

Let l, p be primes such that $p=2 l+1$. To consider divisibility of the class number h^{+}of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$ by primes q it is suitable to sort primes q according to their order modulo l. The simplest case is the case when the order of q modulo l is $l-1$, i.e. when q is a primitive root modulo l. In this case the problem is completely solved, because it is proved that q does not divide h^{+}. The proof for $q=2$ can be found in [1] and for $q>2$ in [4]. According to complexity, the further case is the case when the order of q modulo l is $\frac{l-1}{2}$, hence when q generates the group of quadratic residues modulo l.

In this case we have:

1) $q=2$. If $l \equiv 3(\bmod 4)$, then 2 does not divide h^{+}. (For the proof see [2].)
2) $q=3$. The prime 3 does not divide h^{+}. (For the proof see [5].)
3) $q=5$. If $l \equiv 3(\bmod 4)$ then 5 does not divide h^{+}. (For the proof see $[6]$.)

The divisibility of h^{+}by a general prime q under the assumption $p \equiv-1$ $(\bmod q), p \not \equiv-1\left(\bmod q^{3}\right)$ was considered in the papers [7], [8].

The aim of this paper is to derive criteria for divisibility of h^{+}by a prime q without any restriction imposed on $p(\bmod q)$. As an application of derived criteria we shall prove Theorem 7 .

Theorem 7. Let q be prime, $q \leq 23$. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4)$, and let the order of the prime q modulo l be $l-1$ or $\frac{l-1}{2}$. The prime q does not divide h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$.

Note that if $l=2 l_{1}+1$, where l_{1} is a prime, then each $q \not \equiv 0, \pm 1(\bmod l)$ satisfies the conditions of Theorem 5.

This implies the following Corollary.

Corollary. Let l_{1}, l, p be primes such that $l=2 l_{1}+1, p=2 l+1$. The prime q does not divide h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$, for $q \leq 23$.

Let q be an odd prime. Define the numbers $A_{0}, A_{1}, A_{2}, \ldots, A_{q-1}$ as follows:

$$
A_{0}=0, A_{j}=\sum_{i=1}^{j} \frac{1}{i}, \text { for } j=1,2, \ldots, q-1 .
$$

Let s be a rational q-integer. Put $A_{s}=A_{j}$ for an integer $j, 0 \leq j<q, s \equiv j$ $(\bmod q)$.

Let m, n be natural numbers, $m \equiv 1(\bmod 2),(m, n)=1$. Associate to the number n the permutation $\phi_{m, n}$ of the numbers $1,2, \ldots, \frac{m-1}{2}$ as follows:

$$
\phi_{m, n}(x) \equiv \pm n x \quad(\bmod m), \text { for } x=1,2, \ldots, \frac{m-1}{2}
$$

Further, associate to the number n the quadratic form $Q_{m, n}\left(X_{1}, X_{2}, \ldots, X_{\frac{m-1}{2}}\right)$,

$$
Q_{m, n}\left(X_{1}, X_{2}, \ldots X_{\frac{m-1}{2}}\right)=X_{1}^{2}+X_{2}^{2}+\cdots+X_{\frac{m-1}{2}}^{2}-\sum_{i=1}^{\frac{m-1}{2}} X_{i} X_{\phi_{m, n}(i)} .
$$

The following theorem holds
Theorem 1. Let q be an odd prime. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4), p \equiv-m(\bmod q), m \equiv 1(\bmod 2), m>0$, and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then for each divisor $n,(n, q)=1$, of the number $p+m$, the following congruence holds:
(i)

$$
\frac{p+m}{2 q} \frac{n^{q-1}-1}{q} \equiv Q_{m, n}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{-\frac{t}{m}}\right) \quad(\bmod q) .
$$

(ii) If $n q \left\lvert\, \frac{p+m}{q}\right.$, then

$$
\frac{p+m}{2 q^{2}} \equiv-Q_{m, q n}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{-\frac{t}{m}}\right) \quad(\bmod q),
$$

where $t=\frac{m-1}{2}$.
Proof. To prove this theorem, the following assertion from [4] will be used:
Proposition 1. Let l, p, q be primes, $p \equiv 1(\bmod l), q \neq 2 ; q \neq l ; q<p$. Let K be a subfield of the field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right),[K: \mathbf{Q}]=l$ and let h_{K} be the class number of the field K. If $q \mid h_{K}$, then $q \mid N_{\mathbf{Q}\left(\zeta_{l}\right) / \mathbf{Q}}(\omega)$, where

$$
\omega=b_{1} \sum_{i \equiv 1(\bmod q)} \chi(i)+b_{2} \sum_{i \equiv 2(\bmod q)} \chi(i)+\cdots+b_{q-1} \sum_{i \equiv q-1(\bmod q)} \chi(i),
$$

with the sums all taken with $1 \leq i \leq p-1$, with $\chi(x)$ a :Dirichlet character modulo p of order l, and b_{j} defined by the expressions

$$
\frac{p}{q}\left(\frac{\left(\zeta_{p}-1\right)^{q}}{\zeta_{p}^{q}-1}-1\right) \equiv b_{1} \zeta_{p}+b_{2} \zeta_{p}^{2}+\cdots+b_{p-1} \zeta_{p}^{p-1} \quad(\bmod q)
$$

The following lemma will determine the coefficients $b_{1}, b_{2}, \ldots, b_{q-1}$.

Lemma 1. Let $p \equiv z(\bmod q)$. Then

$$
b_{i}=A_{\frac{-i}{z}}, \text { for } i=1,2, \ldots, q-1
$$

Proof. We note that the b_{j} can be determined explicitly by multiplying the above expression through by $\zeta_{p}^{q}-1$: In fact we get (taking $b_{0}=0$ and each $\left.b_{k}=b_{k}(\bmod p)\right)$

$$
\begin{aligned}
\frac{1}{p} \sum_{j=0}^{p-1}\left(b_{j-q}-b_{j}\right) \zeta_{p}^{j} & \equiv\left(\frac{\left(\zeta_{p}-1\right)^{q}-\left(\zeta_{p}^{q}-1\right)}{q}\right)=\sum_{i=1}^{q-1} \frac{1}{q}\binom{q}{i}(-1)^{q-i} \zeta_{p}^{i} \\
& \equiv \sum_{i=1}^{q-1} \frac{\zeta_{p}^{i}}{i}(\bmod q)
\end{aligned}
$$

since

$$
\frac{1}{q}\binom{q}{i}=\frac{1}{i} \frac{(q-1)(q-2) \ldots(q-i+1)}{(i-1)!} \equiv \frac{(-1)^{i-1}}{i} \quad(\bmod q) .
$$

Comparing coefficients we see that $b_{j-q}-b_{j} \equiv b_{-q}-b_{0}+p \delta_{j}(\bmod q)$, where $\delta_{j}=\frac{1}{j}$ if $1 \leq j \leq q-1$ and $\delta_{j}=0$ otherwise. Adding these congruences together for $j=0,-q,-2 q, \ldots,-(n-1) q$ and noting that $b_{0}=0$, we obtain $b_{-n q} \equiv n b_{-q}+$ $\frac{p}{(p)_{p}}+\frac{p}{(2 p)_{q}}+\cdots+\frac{p}{(m p)_{q}}(\bmod q)$, where $(m+1) p \geq n q>m p$ and $(j p)_{q}$ is the least positive residue of $j p(\bmod q)$, by an easy induction. Taking $n=p$ gives that $0=b_{0} \equiv p b_{-q}+1+\frac{1}{2}+\cdots+\frac{1}{q-1} \equiv p b_{-q}(\bmod q)\left(\right.$ since $\frac{1}{j}+\frac{1}{q-j} \equiv 0(\bmod q)$ for each j), and thus $b_{-q} \equiv 0(\bmod q)$. Therefore, if $1 \leq j \leq p-1$ we write $j=(m+1) p-n q$, so that

$$
b_{j}=b_{-n q} \equiv 1+\frac{1}{2}+\cdots+\frac{1}{m} \equiv 1+\frac{1}{2}+\cdots+\frac{1}{(-j / p)_{q}} \quad(\bmod q)
$$

Lemma 1 is proved.
Let $p \equiv z(\bmod q)$. By Proposition 1 we have

$$
\omega=\sum_{i=1}^{p-1} A_{\frac{-i}{z}} \chi(i)
$$

Denote

$$
\tau=\sum_{0<i<\frac{p}{2}} A_{\frac{-i}{z}} \chi(i)
$$

It is easy to see that $\omega=2 \tau$.
Since the order of q modulo l is $\frac{l-1}{2}$, according to [10], Theorem 2.13, we have that q is splitting to two divisors in $\mathbf{Q}\left(\zeta_{l}\right)$. Because $l \equiv 3(\bmod 4)$, it holds that $\left(\frac{-1}{l}\right)=-1$, hence if $q \mid \mathrm{N}_{\mathbf{Q}\left(\zeta_{l}\right) / \mathbf{Q}}(\omega)$, then q divides $\tau \bar{\tau}$.

The following formula holds

$$
\begin{equation*}
\tau \bar{\tau}=\sum_{i, j<\frac{p}{2}} A_{\frac{-i}{z}} A_{\frac{-j}{z}} \chi\left(i j^{-1}\right)=d_{0}+d_{1} \zeta_{l}+d_{2} \zeta_{l}^{2}+\cdots+d_{l-1} \zeta^{l-1} . \tag{1}
\end{equation*}
$$

Then $q \mid \tau \bar{\tau}$ if and only if

$$
d_{0} \equiv d_{1} \equiv \cdots \equiv d_{l-1} \quad(\bmod q)
$$

Let $p \equiv-m(\bmod q), m>0, m \equiv 1(\bmod 2)$. Hence $b_{i}=A_{\frac{i}{m}}$. Denote by r such a number that $r<l, g^{r} \equiv \pm n(\bmod p)$. Let $\chi\left(i j^{-1}\right)=\zeta_{l}^{r}$. Then either
$\operatorname{ind}\left(i j^{-1}\right)=r$ or $r+l$, therefore

$$
\begin{equation*}
i j^{-1} \equiv \pm n \quad(\bmod p), i, j<\frac{p}{2} \tag{2}
\end{equation*}
$$

The following lemma determines the coefficient d_{r} of (1).
Lemma 2. Let $p \equiv-m(\bmod q), m>0, m \equiv 1(\bmod 2), g^{r} \equiv \pm n(\bmod p)$. For the coefficient $d_{r}, r<l$, the following holds:

$$
\begin{aligned}
d_{r}= & \sum_{0<j<\frac{p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}}+\sum_{\frac{p}{n}<j<\frac{2 p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}+1} \\
& +\sum_{\frac{2 p}{n}<j<\frac{3 p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}+2}+\cdots+\sum_{\frac{n-1}{\frac{2}{n} p}<j<\frac{p}{2}} A_{\frac{j}{m}} A_{\frac{j n}{m}+\frac{n-1}{2}},
\end{aligned}
$$

for n odd,

$$
\begin{aligned}
d_{r}= & \sum_{0<j<\frac{p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}}+\sum_{\frac{p}{n}<j<\frac{2 p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}+1} \\
& +\sum_{\frac{2 p}{n}<j<\frac{3 p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}+2}+\cdots+\sum_{\frac{\left(\frac{n}{2}-1\right) p}{n}<j<\frac{p}{2}} A_{\frac{j}{m}} A_{\frac{j n}{m}+\frac{n}{2}-1},
\end{aligned}
$$

for n even.
Proof. By $(2), i j^{-1} \equiv \pm n(\bmod p), i, j<\frac{p}{2}$. Therefore either $i \equiv n j(\bmod p)$ or $i \equiv p-n j(\bmod p)$. Let $n j<p$. From (1) we get the term $A_{\frac{j}{m}} A_{\frac{n j}{m}} \chi\left(i j^{-1}\right)$ if $n j<\frac{p}{2}$ and $A_{\frac{j}{m}} A_{\frac{p-n j}{m}} \chi\left(i j^{-1}\right)$ if $n j>\frac{p}{2}$. Clearly $\frac{p-n j}{m} \equiv-1-\frac{n j}{m}(\bmod q)$. From $\frac{p-n j}{m}+\frac{n j}{m} \equiv-1(\bmod q)$ we get $A_{\frac{n j}{m}}=A_{\frac{p-n j}{m}}$. If $p<n j<2 p$, then the coefficient of $\chi\left(i j^{-1}\right)$ is $A_{\frac{j}{m}} A_{\frac{n j-p}{m}}$ and hence $A_{\frac{j}{m}}^{m} A_{\frac{n j}{m}+1}^{m}$. Repeating this procedure we obtain

$$
d_{r}=\sum_{0<j<\frac{p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}}+\sum_{\frac{p}{n}<j<\frac{2 p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}+1}+\sum_{\frac{2 p}{n}<j<\frac{3 p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}+2}+\ldots
$$

The following lemma determines the coefficient $d_{r}, g^{r} \equiv \pm n(\bmod p)$ in the special case when $n \left\lvert\, \frac{p+m}{q}\right.$. The reason why we restrict ourselves to such special coefficients is that in this case it is possible to give such criterion of divisibility h^{+} that has a simple form (see Theorem 1). If n does not divide $\frac{p+m}{q}$, then things are more complicated and even in the most simple case when $n=3$ and 3 does not divide $\frac{p+m}{q}$, the corresponding criteria have a more complicated form than Theorem 1 (see Theorem 2).
Lemma 3. Let $p \equiv-m(\bmod q), m>0, m \equiv 1(\bmod 2), g^{r} \equiv \pm n(\bmod p)$. For the coefficient $d_{r}, r<l, n \left\lvert\, \frac{p+m}{q}\right.$ the following holds:

$$
\begin{align*}
& d_{r} \equiv \frac{p+m}{q n}\left(\sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}}+\sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+1}\right. \tag{3}\\
&\left.\quad+\cdots+\sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n-3}{2}}+\frac{1}{2} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n-1}{2}}\right) \\
& \quad-\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{n i}{m}+\left[\frac{n i}{m}\right]}(\bmod q)
\end{align*}
$$

for $n \equiv 1(\bmod 2)$,

$$
\begin{gathered}
d_{r} \equiv \frac{p+m}{q n}\left(\sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}}+\sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+1}+\cdots+\sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n}{2}-1}\right) \\
-\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-n i}{m}+\left[\frac{n i}{m}\right]}(\bmod q),
\end{gathered}
$$

for $n \equiv 0(\bmod 2)$.
Proof. The following congruences hold

$$
\begin{gathered}
\sum_{0<j<\frac{p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}} \equiv \frac{p+m}{q n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}}-\sum_{\left[\frac{i n}{m}\right]=0}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-n i}{m}} \\
\sum_{\frac{p}{n}<j<\frac{2 p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}+1} \equiv \frac{p+m}{q n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+1}-\sum_{\left[\frac{i n}{m}\right]=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-n i}{m}+1} \\
\sum_{\frac{p \frac{n-1}{2}}{n}<j<\frac{p}{2}} A_{\frac{j}{m}} A_{\frac{j n}{m}+\frac{n-1}{2}} \equiv \frac{p+m}{2 q n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n-1}{2}}-\sum_{\left[\frac{i n}{m}\right]=\frac{n-1}{2}}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-n i}{m}+\frac{n-1}{2}}
\end{gathered}
$$

for n odd.
And

$$
\begin{aligned}
\sum_{0<j<\frac{p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}} \equiv \frac{p+m}{q n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}}-\sum_{\left[\frac{i n}{m}\right]=0}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-n i}{m}}, \\
\sum_{\frac{p}{n}<j<\frac{2 p}{n}} A_{\frac{j}{m}} A_{\frac{j n}{m}+1} \equiv \frac{p+m}{q n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+1}-\sum_{\left[\frac{i n}{m}\right]=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-n i}{m}+1},
\end{aligned}
$$

$$
\sum_{\frac{p\left(\frac{n}{2}-1\right)}{n}<j<\frac{p}{2}} A_{\frac{j}{m}} A_{\frac{j n}{m}+\frac{n}{2}-1} \equiv \frac{p+m}{q n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n}{2}-1}-\sum_{\left[\frac{i n}{m}\right]=\frac{n}{2}-1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-n i}{m}+\frac{n}{2}-1}
$$

for n even.
These congruences can be proved as follows. Let n be odd. If $s \equiv t(\bmod q)$, then $A_{s} \equiv A_{t}(\bmod q)$. On the basis of this fact it is enough to prove that for each $k=1,2, \ldots, \frac{n-1}{2}$ the following holds: the set $\left\{j \left\lvert\, \frac{k p}{n}<j<\frac{(k+1) p}{n}\right.\right\} \cup\left\{-i \left\lvert\,\left[\frac{i n}{m}\right]=\right.\right.$ $\left.k, i \leq \frac{m-1}{2}\right\}$ gives $\frac{p+m}{q n}$ exemplars of the full residue system modulo q for $k=$
$1,2, \ldots, \frac{n-3}{2}$, and $\frac{p+m}{2 q n}$ exemplars of the full residue system modulo q for $k=\frac{n-1}{2}$.
From $n \mid p+m$ we get that $(m, n)=1$. Hence $\left[\frac{i n}{m}\right]=k, k \neq 0$ if and only if

$$
\frac{k m}{n}<i<\frac{(k+1) m}{n}
$$

Denote $\frac{p+m}{n q}=v$, hence $m=n q v-p$. It implies

$$
k q v-\frac{k p}{n}<i<(k+1) q v-\frac{(k+1) p}{n} .
$$

Multiplying by -1 and adding $(k+1) q v$, we get

$$
\frac{(k+1) p}{n}<-i+(k+1) q v<\frac{k p}{n}+q v .
$$

Denote $i^{*}=-i+(k+1) q v$. Now we have

$$
\frac{k p}{n}<i<\frac{(k+1) p}{n} ; \frac{(k+1) p}{n}<i^{*}<\frac{k p}{n}+q v .
$$

This provides $q v$ successive natural numbers, hence we have $v=\frac{p+m}{q n}$ exemplars of full residue systems modulo q. If $k=0$, then the terms A_{0} and $A_{q v}$ will be missing. Since $A_{0}=A_{q v}=0$, the congruence will hold for $k=0$ as well. For $k=\frac{n-1}{2}$, by the same method we get $\frac{p+m}{2 q n}$ exemplars of the full residue system modulo q. Summing the congruences we get the required congruence. The same procedure applies for n even. Lemma 3 is proved.

In the formula for d_{r}, there is the sum

$$
\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-n i}{m}+\left[\frac{n i}{m}\right]} .
$$

We shall prove that

$$
\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-n i}{m}+\left[\frac{n i}{m}\right]} \equiv \sum_{i=1}^{\frac{m-1}{2}} X_{i} X_{\phi_{m, n}(i)} \quad(\bmod q),
$$

for $X_{i}=A_{\frac{-i}{m}}$, for $i=1,2, \ldots, \frac{m-1}{2}$.
Clearly

$$
\frac{-n i}{m}+\left[\frac{n i}{m}\right] \equiv \frac{-1}{m}\left(n i-m\left[\frac{n i}{m}\right]\right) \quad(\bmod q)
$$

The number $n i-m\left[\frac{n i}{m}\right]$ is equal to the residuum $n i$ modulo m. It follows that if $n i-m\left[\frac{n i}{m}\right]<\frac{m}{2}$, then $n i-m\left[\frac{n i}{m}\right]=\phi_{m, n}(i)$. If $n i-m\left[\frac{n i}{m}\right]>\frac{m}{2}$, then $n i-m\left[\frac{n i}{m}\right]=m-\phi_{m, n}(i)$.

Consider the numbers

$$
A_{-\frac{\phi_{m, n}(i)}{m}} \text { resp. } A_{\frac{-1}{m}\left(m-\phi_{m, n}(i)\right)}
$$

Since

$$
\frac{-1}{m} \phi_{m, n}(i)+\frac{-1}{m}\left(m-\phi_{m, n}(i)\right)=-1
$$

there holds

$$
A_{-\frac{\phi_{m, n}(i)}{m}} \equiv A_{\frac{-1}{m}\left(m-\phi_{m, n}(i)\right)} \quad(\bmod q)
$$

which implies the required relation.
Now we shall express the coefficient d_{0} corresponding to the value $n=1$. The substitution into (3) gives

$$
d_{0}=\frac{p+m}{2 q} \sum_{i=1}^{q-1} A_{i}^{2}-\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}}^{2} .
$$

If $q \mid h^{+}$, then $d_{0} \equiv d_{r}(\bmod q)$ and hence for $n \equiv 1(\bmod 2)$ there holds:

$$
\begin{aligned}
\frac{p+m}{q n}\left(\sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}}+\sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+1}+\cdots+\right. & \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n-3}{2}} \\
& \left.+\frac{1}{2} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n-1}{2}}\right) \\
- & \sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-\phi_{m, n}(i)}{m}} \equiv \frac{p+m}{2 q} \sum_{i=1}^{q-1} A_{i}^{2}-\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}}^{2} \quad(\bmod q) .
\end{aligned}
$$

It is easy to prove that $\sum_{i=1}^{q-1} A_{i}^{2} \equiv-2(\bmod q)$. Therefore

$$
\begin{aligned}
\frac{p+m}{q}\left(\frac{1}{n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}}+\frac{1}{n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+1}+\cdots\right. & +\frac{1}{n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n-3}{2}} \\
& \left.+\frac{1}{2 n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n-1}{2}}+1\right) \\
\equiv-Q_{m, n}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{\frac{-t}{m}}\right) & (\bmod q),
\end{aligned}
$$

where $t=\frac{m-1}{2}$.
By [8] (proof of Theorem 1), the following holds:

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}}+\frac{1}{n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+1}+\cdots+\frac{1}{n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n-3}{2}} \\
& \quad+\frac{1}{2 n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n-1}{2}}+1 \\
& \equiv-\frac{1}{2} \frac{n^{q-1}-1}{q} \quad(\bmod q)
\end{aligned}
$$

The congruence (i) is now proved for $n \equiv 1(\bmod 2)$. Analogically, the congruence (i) can be proved for $n \equiv 0(\bmod 2)$, on the basis of the congruence

$$
\begin{gathered}
\frac{1}{n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}}+\frac{1}{n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+1}+\cdots+\frac{1}{n} \sum_{i=1}^{q-1} A_{\frac{i}{m}} A_{\frac{n i}{m}+\frac{n}{2}-1}+1 \\
\equiv-\frac{1}{2} \frac{n^{q-1}-1}{q} \quad(\bmod q)
\end{gathered}
$$

Now we shall prove the congruence (ii). Substituting $n q$, where $n q \frac{p+m}{q}$, instead of n into the formula for the computation d_{r}, we get for $n \equiv 1(\bmod 2)$ the following sum:

$$
\begin{aligned}
A_{1}\left(A_{1}+A_{2}+\cdots+A_{q-1}\right) & +A_{2}\left(A_{1}+A_{2}+\cdots+A_{q-1}\right) \\
& +\cdots+\frac{1}{2} A_{\frac{n q-1}{2}}\left(A_{1}+A_{2}+\cdots+A_{q-1}\right)
\end{aligned}
$$

It is easy to see that $A_{1}+A_{2}+\cdots+A_{q-1} \equiv 1(\bmod q)$, therefore

$$
\begin{aligned}
A_{1}\left(A_{1}+A_{2}+\cdots+A_{q-1}\right) & +A_{2}\left(A_{1}+A_{2}+\cdots+A_{q-1}\right) \\
& +\cdots+\frac{1}{2} A_{\frac{n q-1}{2}}\left(A_{1}+A_{2}+\cdots+A_{q-1}\right) \equiv \frac{n}{2} \quad(\bmod q)
\end{aligned}
$$

Analogously for $n \equiv 0(\bmod 2)$ we get

$$
\begin{aligned}
A_{1}\left(A_{1}+A_{2}+\cdots+A_{q-1}\right) & +A_{2}\left(A_{1}+A_{2}+\cdots+A_{q-1}\right) \\
& +\cdots+A_{\frac{n q}{2}-1} \equiv \frac{n}{2} \quad(\bmod q) .
\end{aligned}
$$

Theorem 1 is proved.
We shall show 12 corollaries of Theorem 1.
Corollary 1. Let q be an odd prime. Let l, p be primes such that $p=2 l+1$, $l \equiv 3(\bmod 4), p \equiv-3(\bmod q), p \not \equiv-3\left(\bmod q^{3}\right)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then $2^{q-1} \equiv 1\left(\bmod q^{2}\right)$.
Proof. By Theorem 1, (i) putting $n=2$ we have

$$
\frac{p+3}{2 q} \frac{2^{q-1}-1}{q} \equiv Q_{3,2}\left(A_{\frac{-1}{3}}\right) \quad(\bmod q) .
$$

Clearly $Q_{3,2}\left(X_{1}\right)=0$, hence

$$
\frac{p+3}{2 q} \frac{2^{q-1}-1}{q} \equiv 0 \quad(\bmod q)
$$

If $\frac{p+3}{2 q} \not \equiv 0(\bmod q)$, then $\frac{2^{q-1}-1}{q} \equiv 0(\bmod q)$. Suppose that $q \left\lvert\, \frac{p+3}{q}\right.$. By Theorem 1, (ii) we have

$$
-\frac{p+3}{2 q^{2}} \equiv Q_{3, q}\left(A_{\frac{-1}{3}}\right) \equiv 0 \quad(\bmod q)
$$

hence $p+3 \equiv 0\left(\bmod q^{3}\right)$-a contradiction.
Corollary 2. Let q be an odd prime. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4), p \equiv-5(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then

$$
F_{q-\left(\frac{5}{q}\right)} \equiv 0 \quad\left(\bmod q^{2}\right)
$$

where F_{n} is the nth Fibonacci number $\left(F_{0}=0, F_{1}=1, F_{n+2}=F_{n+1}+F_{n}\right.$ for $0 \leq n$).

Moreover, if $p \not \equiv-5\left(\bmod q^{3}\right)$, then $2^{q-1} \equiv 1\left(\bmod q^{2}\right)$.

Proof. The number $p+5$ has the divisors $n=2,4$. Therefore by Theorem 1 (i)

$$
\begin{aligned}
& \frac{p+5}{2 q} \frac{2^{q-1}-1}{q} \equiv Q_{5,2}\left(A_{\frac{-1}{5}}, A_{\frac{-2}{5}}\right) \quad(\bmod q), \\
& \frac{p+5}{2 q} \frac{4^{q-1}-1}{q} \equiv Q_{5,4}\left(A_{\frac{-1}{5}}, A_{\frac{-2}{5}}\right) \quad(\bmod q) .
\end{aligned}
$$

Clearly

$$
\phi_{5,2}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right), \phi_{5,4}=\left(\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right) .
$$

Hence

$$
Q_{5,2}\left(X_{1}, X_{2}\right)=X_{1}^{2}+X_{2}^{2}-2 X_{1} X_{2}=\left(X_{1}-X_{2}\right)^{2}, Q_{5,4}\left(X_{1}, X_{2}\right)=0
$$

It is easy to see that

$$
\left(A_{\frac{-1}{5}}-A_{\frac{-2}{5}}\right)^{2} \equiv\left(\sum_{\frac{q}{5}<i<\frac{2 q}{5}} \frac{1}{i}\right)^{2} \quad(\bmod q) .
$$

Therefore

$$
\begin{gathered}
\frac{p+5}{2 q} \frac{2^{q-1}-1}{q} \equiv\left(\sum_{\frac{q}{5}<i<\frac{2 q}{5}} \frac{1}{i}\right)^{2} \quad(\bmod q) \\
\frac{p+5}{2 q} \frac{4^{q-1}-1}{q} \equiv 0 \quad(\bmod q) .
\end{gathered}
$$

Because $\frac{2^{q-1}-1}{q} \equiv 0(\bmod q)$ if and only if $\frac{4^{q-1}-1}{q} \equiv 0(\bmod q)$, we get that if $q \mid h^{+}$, then

$$
\sum_{\frac{q}{5}<i<\frac{2 q}{5}} \frac{1}{i} \equiv 0 \quad(\bmod q) .
$$

By [11], for $q>5$ there holds

$$
\frac{2}{5} \sum_{\frac{q}{5}<i<\frac{2 q}{5}} \frac{1}{i} \equiv \frac{1}{q} F_{q-\left(\frac{5}{q}\right)} \quad(\bmod q)
$$

which proves the first assertion of Corollary 2.
If $\frac{2^{q-1}-1}{q} \not \equiv 0(\bmod q)$, then $\frac{p+5}{2 q^{2}} \equiv 0(\bmod q)$. By (ii) we get $\frac{p+5}{2 q^{2}} \equiv 0$ $(\bmod q)$-a contradiction.
Remark. P.L. Montgomery [9] reports no solution of $F_{q-\left(\frac{5}{q}\right)} \equiv 0\left(\bmod q^{2}\right)$ with $q<2^{32}$.

Corollary 3. Let q be an odd prime. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4), p \equiv-7(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then $\left.\mathbf{(}^{*}\right)\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right) \equiv 0(\bmod q)$.

Moreover, if $p \not \equiv-7\left(\bmod q^{3}\right)$, then $2^{q-1} \equiv 3^{q-1} \equiv 1\left(\bmod q^{2}\right)$.
Proof. The number $p+7$ has the divisors $n=2,3,6$. By Theorem 1 (i) the following holds

$$
\begin{aligned}
& \frac{p+7}{2 q} \frac{2^{q-1}-1}{q} \equiv Q_{7,2}\left(A_{\frac{-1}{7}}, A_{\frac{-2}{7}}, A_{\frac{-3}{7}}\right) \\
&(\bmod q), \\
& \frac{p+7}{2 q} \frac{3^{q-1}-1}{q} \equiv Q_{7,3}\left(A_{\frac{-1}{7}}, A_{\frac{-2}{7}}, A_{\frac{-3}{7}}\right) \\
&(\bmod q), \\
& \frac{p+7}{2 q} \frac{6^{q-1}-1}{q} \equiv Q_{7,6}\left(A_{\frac{-1}{7}}, A_{\frac{-2}{7}}, A_{\frac{-3}{7}}\right)
\end{aligned}(\bmod q) ., ~
$$

Clearly

$$
\phi_{7,2}=\phi_{7,3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \phi_{7,6}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)
$$

Hence

$$
Q_{7,2}\left(X_{1}, X_{2}, X_{3}\right)=Q_{7,3}\left(X_{1}, X_{2}, X_{3}\right), Q_{7,6}\left(X_{1}, X_{2}, X_{3}\right)=0
$$

By rearrangement we get

$$
\begin{gathered}
Q_{7,2}\left(A_{\frac{-1}{7}}, A_{\frac{-2}{7}}, A_{\frac{-3}{7}}\right) \\
\equiv\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right)(\bmod q),
\end{gathered}
$$

Therefore we have

$$
\frac{p+7}{2 q} \frac{2^{q-1}-1}{q}
$$

$$
\equiv\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right)(\bmod q)
$$

$$
\frac{p+7}{2 q} \frac{3^{q-1}-1}{q}
$$

$$
\equiv\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right)(\bmod q)
$$

$$
\frac{p+7}{2 q} \frac{6^{q-1}-1}{q} \equiv 0 \quad(\bmod q)
$$

If

$$
\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right) \not \equiv 0(\bmod q),
$$

then $\frac{p+7}{2 q} \not \equiv 0(\bmod q), \frac{6^{q-1}-1}{q} \equiv 0(\bmod q)$ and $\frac{2^{q-1}-1}{q} \equiv \frac{3^{q-1}-1}{q}(\bmod q)$ and $\frac{2^{q-1}-1}{\frac{q}{\text { If }}} \not \equiv 0(\bmod q)$. This easily yields a contradiction.

$$
\left(\sum_{\frac{9}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{9}{7}<i<\frac{2 q}{7}} \frac{1}{i}\right)\left(\sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i}\right) \equiv 0(\bmod q)
$$

and $\frac{p+7}{2 q} \not \equiv 0(\bmod q)$, then

$$
2^{q-1} \equiv 3^{q-1} \equiv 1 \quad\left(\bmod q^{2}\right)
$$

If $\frac{p+7}{2 q} \equiv 0(\bmod q)$, then by Theorem 1 (ii) $\frac{p+7}{2 q^{2}} \equiv 0(\bmod q)$ and therefore $p \equiv-7$ $\left(\bmod q^{3}\right)$-a contradiction.

Corollary 4. Let q be an odd prime, $q \equiv 2(\bmod 3)$. Let l, p be primes such that $p=2 l+1, l \equiv 3(\bmod 4), p \equiv-7(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then

$$
\sum_{\frac{q}{7}<i<\frac{2 q}{7}} \frac{1}{i} \equiv \sum_{\frac{2 q}{7}<i<\frac{3 q}{7}} \frac{1}{i} \equiv 0 \quad(\bmod q) .
$$

Proof. The left side of the congruence $\left(^{*}\right)$ can be expressed as the norm of the field $\mathbf{Q}\left(\zeta_{3}\right)$ into \mathbf{Q}. If $q \equiv 2(\bmod 3)$, then q does not decompose in the field $\mathbf{Q}\left(\zeta_{3}\right)$, and it implies the assertion of Corollary 4.

By [3] there holds: For $1 \leq a \leq 6$, and any odd prime $q \neq 7$,

$$
B_{q-1}\left(\frac{a}{7}\right)-B_{q-1} \equiv \frac{7}{2 q}\left(U_{q}(7, a, b)-1\right) \quad(\bmod q)
$$

where $b=1,2$ or 3 with $b \equiv \pm q(\bmod 7)$, and U_{n} satisfies the recurrence relation

$$
U_{n+3}=7 U_{n+2}-14 U_{n+1}+7 U_{n}
$$

The values of U_{1}, U_{2}, U_{3} are given in the table below

$\pm a$	$\pm b$	U_{1}	U_{2}	U_{3}
2	1	1	2	5
3	2	2	7	26
1	3	2	6	19
3	1	1	2	6
1	2	3	11	41
2	3	2	5	13
a	a	1	3	10

From Corollary 4 and the just mentioned result we get:
Corollary 5. Let q be an odd prime, $b \equiv \pm q(\bmod 7)$ where $b=1,2$ or 3 and $q \equiv 2(\bmod 3)$. Let l, p be primes such that $p=2 l+1, l \equiv 3(\bmod 4), p \equiv-7$ $(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then

$$
U_{q}(7,1, b) \equiv U_{q}(7,2, b) \equiv U_{q}(7,3, b) \quad\left(\bmod q^{2}\right)
$$

Corollary 6. Let q be an odd prime. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4), p \equiv-9(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then

$$
\left(\sum_{\frac{q}{9}<i<\frac{2 q}{9}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{2 q}{9}<i<\frac{4 q}{9}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{q}{9}<i<\frac{2 q}{9}} \frac{1}{i}\right)\left(\sum_{\frac{2 q}{q}<i<\frac{4 q}{9}} \frac{1}{i}\right) \equiv 0 \quad(\bmod q)
$$

Moreover, if $p \not \equiv-9\left(\bmod q^{3}\right)$, then $2^{q-1} \equiv 1\left(\bmod q^{2}\right)$.
Proof. The number $p+9$ has the divisors $n=2,4,8$, which follows from $p+9=$ $2 l+10=2(l+5)=2(4 k+3+5)=8(k+2)$. Therefore, we have

$$
\phi_{9,2}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 3 & 1
\end{array}\right), \phi_{9,4}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right), \phi_{9,8}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

Hence

$$
\begin{aligned}
Q_{9,2}\left(X_{1} X_{2}, X_{3}, X_{4}\right) & =Q_{9,4}\left(X_{1} X_{2}, X_{3}, X_{4}\right) \\
& =X_{1}^{2}+X_{2}^{2}+X_{4}^{2}-\left(X_{1} X_{2}+X_{1} X_{4}+X_{2} X_{4}\right)
\end{aligned}
$$

and

$$
Q_{9,8}\left(X_{1} X_{2}, X_{3}, X_{4}\right)=0
$$

By rearrangement we get

$$
\begin{gathered}
Q_{9,2}\left(A_{\frac{-1}{9}}, A_{\frac{-2}{9}}, A_{\frac{-3}{9}}, A_{\frac{-4}{9}}\right) \\
\equiv\left(\sum_{\frac{9}{9}<i<\frac{2 g}{9}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{2 q}{9}<i<\frac{4 q}{9}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{q}{9}<i<\frac{2 g}{9}} \frac{1}{i}\right)\left(\sum_{\frac{2 q}{q}<i<\frac{4 g}{9}} \frac{1}{i}\right)(\bmod q) .
\end{gathered}
$$

The rest of the proof is the same as in the case of Corollary 3.
To prove the remaining corollaries, the following fact will be used.

1. If $n \equiv \pm 1(\bmod m)$, then the permutation $\phi_{m, n}$ is identical and therefore $Q_{m, n}\left(X_{1}, X_{2}, \ldots, X_{\frac{m-1}{2}}\right)=0$.
2. If $n_{1} n_{2} \equiv \pm 1(\bmod m)$, then the permutations $\phi_{m, n_{1}}, \phi_{m, n_{2}}$ are inverse and therefore

$$
Q_{m, n_{1}}\left(X_{1}, X_{2}, \ldots, X_{\frac{m-1}{2}}\right)=Q_{m, n_{2}}\left(X_{1}, X_{2}, \ldots, X_{\frac{m-1}{2}}\right)
$$

Corollary 7. Let q be an odd prime. Let l, p be primes such that $p=2 l+1$, $l \equiv 3(\bmod 4), p \equiv-13(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then

$$
\begin{aligned}
& Q_{13,2}\left(A_{\frac{-1}{13}}, A_{\frac{-2}{13}}, A_{\frac{-3}{13}}, A_{\frac{-4}{13}}, A_{\frac{-5}{13}}, A_{\frac{-6}{13}}\right) \\
& \quad \equiv Q_{13,3}\left(A_{\frac{-1}{13}}, A_{\frac{-2}{13}} A_{\frac{-3}{13}}, A_{\frac{-4}{13}}, A_{\frac{-5}{13}}, A_{\frac{-6}{13}}\right) \equiv 0 \quad(\bmod q)
\end{aligned}
$$

Moreover, if $p \not \equiv-13\left(\bmod q^{3}\right)$, then

$$
2^{q-1} \equiv 3^{q-1} \equiv 1 \quad\left(\bmod q^{2}\right)
$$

Proof. The number $p+13$ has the divisors $n=2,3,4,6,12$. By Theorem 1 (i) we have

$$
\begin{aligned}
& \frac{p+13}{2 q} \frac{2^{q-1}-1}{q} \equiv Q_{13,2}\left(A_{\frac{-1}{13}}, A_{\frac{-2}{13}}, A_{\frac{-3}{13}}, A_{\frac{-4}{13}}, A_{\frac{-5}{13}}, A_{\frac{-6}{13}}\right) \\
& \frac{p+13}{2 q} \frac{3^{q-1}-1}{q} \equiv(\bmod q) \\
& \frac{p+13}{} \frac{4^{q-1}-1}{2 q}\left(A_{\frac{-1}{13}}, A_{\frac{-2}{13}}, A_{\frac{-3}{13}}, A_{\frac{-4}{13}}, A_{\frac{-5}{13}}, A_{\frac{-6}{13}}\right) \\
& q(\bmod q) \\
& \frac{p+13}{2 q} \frac{6^{q-1}-1}{q} \equiv Q_{13,3}\left(A_{\frac{-1}{13}}, A_{\frac{-2}{13}}, A_{\frac{-3}{13}}, A_{\frac{-4}{13}}, A_{\frac{-5}{13}}, A_{\frac{-6}{13}}\right) \quad(\bmod q) \\
& \frac{p+13}{} \frac{12^{q-2}}{}\left(A_{\frac{-1}{13}}, A_{\frac{-2}{13}}, A_{\frac{-3}{13}}, A_{\frac{-4}{13}}, A_{\frac{-5}{13}}, A_{\frac{-6}{13}}\right)(\bmod q) \\
& q \\
&(\bmod q)
\end{aligned}
$$

If either

$$
Q_{13,2}\left(A_{\frac{-1}{13}}, A_{\frac{-2}{13}}, A_{\frac{-3}{13}}, A_{\frac{-4}{13}}, A_{\frac{-5}{13}}, A_{\frac{-6}{13}}\right) \not \equiv 0 \quad(\bmod q)
$$

or

$$
Q_{13,3}\left(A_{\frac{-1}{13}}, A_{\frac{-2}{13}}, A_{\frac{-3}{13}}, A_{\frac{-4}{13}}, A_{\frac{-5}{13}}, A_{\frac{-6}{13}}\right) \not \equiv 0 \quad(\bmod q)
$$

then $\frac{p+13}{2 q} \not \equiv 0(\bmod q)$, hence $\frac{12^{q-1}-1}{q} \equiv 0(\bmod q)$ and this yields a contradiction.

Corollary 8. Let q be an odd prime. Let l, p be primes such that $p=2 l+1$, $l \equiv 3(\bmod 4), p \equiv-17(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then

$$
\begin{gathered}
Q_{17,2}\left(A_{\frac{-1}{17}}, A_{\frac{-2}{17}}, A_{\frac{-3}{17}}, A_{\frac{-4}{17}}, A_{\frac{-5}{17}}, A_{\frac{-6}{17}}, A_{\frac{-7}{17}}, A_{\frac{-8}{17}}\right) \\
\equiv Q_{17,4}\left(A_{\frac{-1}{17}}, A_{\frac{-2}{17}}, A_{\frac{-3}{17}}, A_{\frac{-4}{17}}, A_{\frac{-5}{17}}, A_{\frac{-6}{17}}, A_{\frac{-7}{17}}, A_{\frac{-8}{17}}\right) \equiv 0 \quad(\bmod q) .
\end{gathered}
$$

Moreover, if $p \not \equiv-17\left(\bmod q^{2}\right)$, then $2^{q-1} \equiv 1\left(\bmod q^{2}\right)$.
Proof. The number $p+17$ has the divisors $n=2,4,8$. By Theorem 1 (i) we have

$$
\begin{aligned}
& \frac{p+17}{2 q} \frac{2^{q-1}-1}{q} \equiv Q_{17,2}\left(A_{\frac{-1}{17}}, A_{\frac{-2}{17}}, A_{\frac{-3}{17}}, A_{\frac{-4}{17}}, A_{\frac{-5}{17}}, A_{\frac{-6}{17}}, A_{\frac{-7}{17}}, A_{\frac{-8}{17}} \quad(\bmod q)\right. \\
& \frac{p+17}{2 q} \frac{4^{q-1}-1}{q} \equiv Q_{17,4}\left(A_{\frac{-1}{17}}, A_{\frac{-2}{17}}, A_{\frac{-3}{17}}, A_{\frac{-4}{17}}, A_{\frac{-5}{17}}, A_{\frac{-6}{17}}, A_{\frac{-7}{17}}, A_{\frac{-8}{17}} \quad(\bmod q)\right. \\
& \frac{p+17}{2 q} \frac{8^{q-1}-1}{q} \equiv Q_{17,2}\left(A_{\frac{-1}{17}}, A_{\frac{-2}{17}}, A_{\frac{-3}{17}}, A_{\frac{-4}{17}}, A_{\frac{-5}{17}}, A_{\frac{-6}{17}}, A_{\frac{-7}{17}}, A_{\frac{-8}{17}}\right) \quad(\bmod q)
\end{aligned}
$$

If either $Q_{17,2} \not \equiv 0(\bmod q)$ or $Q_{17,4} \not \equiv 0(\bmod q)$, then $\frac{p+17}{2 q} \not \equiv 0(\bmod q)$ and $\frac{2^{q-1}-1}{q} \not \equiv 0(\bmod q)$. The first and the third congruence imply that

$$
\frac{2^{q-1}-1}{q} \equiv \frac{8^{q-1}-1}{q} \quad(\bmod q),
$$

therefore $\frac{2^{q-1}-1}{q} \equiv 0(\bmod q)$-a contradiction.
From now on, the function values of quadratic forms will be omitted, i.e., instead of $Q_{19,2}(\ldots$.$) we shall write Q_{19,2}$.
Corollary 9. Let q be an odd prime. Let l, p be primes such that $p=2 l+1$, $l \equiv 3(\bmod 4), p \equiv-19(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\right.$ $\left.\zeta_{p}^{-1}\right)$. Then $Q_{19,2} \equiv 0(\bmod q)$. If $Q_{19,3} \not \equiv 0(\bmod q)$, then $2^{q-1} \equiv 1\left(\bmod q^{2}\right)$. Moreover, if $p \not \equiv-19\left(\bmod q^{2}\right)$, then $2^{q-1} \equiv 1\left(\bmod q^{2}\right)$.
Proof. The number $p+19$ has the divisors $n=2,3,6$. Hence

$$
\begin{aligned}
\frac{p+19}{2 q} \frac{2^{q-1}-1}{q} & \equiv Q_{19,2} \quad(\bmod q) \\
\frac{p+19}{2 q} \frac{3^{q-1}-1}{q} & \equiv Q_{19,3} \quad(\bmod q) \\
\frac{p+19}{2 q} \frac{6^{q-1}-1}{q} & \equiv Q_{19,3} \quad(\bmod q)
\end{aligned}
$$

If $Q_{19,2} \not \equiv 0(\bmod q)$, then $\frac{2^{q-1}-1}{q} \not \equiv 0(\bmod q)$. The second and the third congruence imply that

$$
\frac{3^{q-1}-1}{q} \equiv \frac{6^{q-1}-1}{q} \quad(\bmod q)
$$

which is not possible, because $\frac{2^{q-1}-1}{q} \not \equiv 0(\bmod q)$. If $Q_{19,3} \not \equiv 0(\bmod q)$, then

$$
\frac{3^{q-1}-1}{q} \equiv \frac{6^{q-1}-1}{q} \quad(\bmod q)
$$

and it follows that $2^{q-1} \equiv 1\left(\bmod q^{2}\right)$.
Corollary 10. Let q be an odd prime. Let l, p be primes such that $p=2 l+1$, $l \equiv 3(\bmod 4), p \equiv-25(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then

$$
Q_{25,2} \equiv Q_{25,3} \equiv Q_{25,4} \equiv 0 \quad(\bmod q)
$$

Moreover, if $p \not \equiv-25\left(\bmod q^{3}\right)$, then $2^{q-1} \equiv 3^{q-1} \equiv 1\left(\bmod q^{2}\right)$.
The proof is analogous as for $p \equiv-13(\bmod q)$.
Corollary 11. Let q be an odd prime. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4), p \equiv-m(\bmod q), p \not \equiv-m\left(\bmod q^{2}\right), m>0, i m \equiv 1(\bmod 2)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that there exist divisors n_{1}, n_{2} of the number $p+m$ such that $n_{1} n_{2} \equiv \pm 1(\bmod m)$ or $n_{1} \equiv \pm n_{2}(\bmod m)$. If $q \mid h^{+}$, then

$$
n_{1}^{q-1} \equiv n_{2}^{q-1} \quad\left(\bmod q^{2}\right)
$$

Proof. Since $n_{1} n_{2} \equiv \pm 1(\bmod m)$ or $n_{1} \equiv \pm n_{2}(\bmod m)$, we have

$$
Q_{m, n_{1}}\left(X_{1}, X_{2}, \ldots, X_{\frac{m-1}{2}}\right) \equiv Q_{m, n_{2}}\left(X_{1}, X_{2}, \ldots, X_{\frac{m-1}{2}}\right) \quad(\bmod q),
$$

and hence

$$
\frac{p+m}{2 q} \frac{n_{1}^{q-1}-1}{q} \equiv \frac{p+m}{2 q} \frac{n_{1}^{q-1}-1}{q} \quad(\bmod q) .
$$

The Corollary now follows from $\frac{p+m}{2 q} \not \equiv 0(\bmod q)$.
Corollary 12. Let q be an odd prime. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4), p \equiv-m(\bmod q)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then for arbitrary n_{1}, n_{2} such that $n_{1} n_{2} \mid p+m,\left(n_{1} n_{2}, q\right)=1$, the following congruence holds.

$$
\begin{gathered}
Q_{m, n_{1} n_{2}}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{-\frac{t}{m}}\right) \\
\equiv Q_{m, n_{1}}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{-\frac{t}{m}}\right)+Q_{m, n_{2}}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{-\frac{t}{m}}\right) \quad(\bmod q),
\end{gathered}
$$

where $t=\frac{m-1}{2}$.
Proof. Since $\frac{\left(n_{1} n_{2}\right)^{q-1}-1}{q} \equiv \frac{n_{1}^{q-1}-1}{q}+\frac{n_{2}^{q-1}-1}{q}(\bmod q)$, the preceding congruence implies Theorem 1 (i).

The following example shows the possibility of applying the congruence of Corollary 12 in order to find out the divisibility of the class number h^{+}of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$.
Example 1. Let $p \equiv-11(\bmod 43)$. If $p \not \equiv \pm 2(\bmod 11)$, then 43 does not divide the class number h^{+}. If $p \equiv \pm 2(\bmod 11)$ and $43 \mid h^{+}$, then

$$
p+11=2.43^{s} \cdot p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{n}^{s_{n}}
$$

where $p_{i} \equiv \pm 1(\bmod 11)$, for $i=1,2, \ldots, n$.
Proof. Let $43^{s} \mid p+11$ and 43^{s+1} does not divide $p+11$, where $1 \leq s$. Put $n_{1}=\frac{p+11}{2.43^{s}}$, $n_{2}=2$. Then it holds:

$$
\begin{gathered}
Q_{11,2 n_{1}}\left(A_{39}, A_{35}, A_{31}, A_{27}, A_{23}\right) \\
\equiv Q_{11, n_{1}}\left(A_{39}, A_{35}, A_{31}, A_{27}, A_{23}\right)+Q_{11,2}\left(A_{39}, A_{35}, A_{31}, A_{27}, A_{23}\right) \quad(\bmod 43) .
\end{gathered}
$$

In the following we shall write quadratic forms without arguments. Because $43 \equiv$ $-1(\bmod 11)$ we have $2 n_{1}=\frac{p+11}{43^{s}} \equiv \pm p(\bmod 11)$. Because $Q_{m, n}=Q_{m,-n}$, it is enough to consider the cases $p \equiv 1,2,3,4,5(\bmod 11)$.

1) $p \equiv 1(\bmod 11)$, then $Q_{11,1}=0 \equiv Q_{11, \frac{1}{2}}+Q_{11,2}(\bmod 43)$. From $Q_{11, \frac{1}{2}}=$ $Q_{11,2}$ we have $Q_{11,2} \equiv 0(\bmod 43)$.
2) $p \equiv 2(\bmod 11)$, then $Q_{11,2} \equiv Q_{11,1}+Q_{11,2}(\bmod 43)$, hence in this case we do not have any information, as $Q_{11,1}=0$.
3) $p \equiv 3(\bmod 11)$, hence $Q_{11,3} \equiv Q_{11, \frac{3}{2}}+Q_{11,2}(\bmod 43), \frac{3}{2} \equiv 7(\bmod 11)$, $3.7 \equiv-1(\bmod 11)$ therefore $Q_{11, \frac{3}{2}}=Q_{11,3}$ and we get that $Q_{11,2} \equiv 0(\bmod 43)$.
4) $p \equiv 4(\bmod 11)$, then analogically as in the preceding cases we get the congruence $Q_{11,3} \equiv 2 Q_{11,2}(\bmod 43)$.
5) $p \equiv 5(\bmod 11)$, then we get $Q_{11,3} \equiv 0(\bmod 43)$.

By substituting $A_{39}, A_{35}, A_{31}, A_{27}, A_{23}$ we have $Q_{11,2}\left(A_{39}, A_{35}, A_{31}, A_{27}, A_{23}\right) \equiv$ $Q_{11,2}(9,33,15,20,10) \equiv 11(\bmod 43)$ and $Q_{11,3}(9,33,15,20,10) \equiv 39(\bmod 43)$.

Hence $Q_{11,2} \not \equiv 0(\bmod 43), Q_{11,3} \not \equiv 0(\bmod 43)$, and $Q_{11,3} \not \equiv 2 Q_{11,2}(\bmod 43)$. By this we proved that if $p \not \equiv \pm 2(\bmod 11)$, then 43 does not divide h^{+}.

The preceding calculations show that if $p+11$ had another divisor than 2 different from $\pm 1(\bmod 11)$, then 43 would not divide h^{+}. Therefore $p+11$ must have the above mentioned form.

Throughout the rest of the paper, we shall consider the divisibility of h^{+}by the concrete primes $q=7,11,13,17,19,23$. Theorem 1 and its corollaries would not sufficiently solve this task. The reason is that for some m (e.g. $m=11$), only one suitable divisor of $p+m$ is known, namely $n=2$.

In what follows, B_{j} resp. $B_{j}(X)$ will denote a Bernoulli number resp. a Bernoulli polynomial.
Theorem 2. Let q be an odd prime. Let l, p be primes such that $p=2 l+1 ; l \equiv 3$ $(\bmod 4), p \equiv-m(\bmod q)$, for $m=1,3,5, \ldots 2 q-3, m \equiv 0,2(\bmod 3)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then the following holds:
I. $m \equiv 0(\bmod 3)$.
(i) if $q \equiv 1(\bmod 3)$, then

$$
\frac{p+m}{2 q} \frac{3^{q-1}-1}{q}+\frac{1}{9} B_{q-2}\left(\frac{1}{3}\right) \equiv C_{m} \quad(\bmod q)
$$

(ii) if $q \equiv 2(\bmod 3), m+2<q$, then

$$
\frac{p+m}{2 q} \frac{3^{q-1}-1}{q}+\frac{2}{9} B_{q-2}\left(\frac{1}{3}\right) \equiv C_{m} \quad(\bmod q)
$$

(iii) if $q \equiv 2(\bmod 3)$ and $m+2 \geq q$, then

$$
\frac{p+m}{2 q} \frac{3^{q-1}-1}{q}-\frac{1}{9} B_{q-2}\left(\frac{1}{3}\right) \equiv C_{m} \quad(\bmod q)
$$

II. $m \equiv 2(\bmod 3)$
(i) if $q \equiv 2(\bmod 3)$, then

$$
\frac{p+m}{2 q} \frac{3^{q-1}-1}{q}+\frac{1}{9} B_{q-2}\left(\frac{1}{3}\right) \equiv C_{m} \quad(\bmod q)
$$

(ii) if $q \equiv 1(\bmod 3), m+2<q$, then

$$
\frac{p+m}{2 q} \frac{3^{q-1}-1}{q}+\frac{2}{9} B_{q-2}\left(\frac{1}{3}\right) \equiv C_{m} \quad(\bmod q)
$$

(iii) if $q \equiv 1(\bmod 3), m+2 \geq q$, then

$$
\frac{p+m}{2 q} \frac{3^{q-1}-1}{q}-\frac{1}{9} B_{q-2}\left(\frac{1}{3}\right) \equiv C_{m} \quad(\bmod q)
$$

where

$$
C_{m}=\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}}^{2}-\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-3 i}{m}+1}+\sum_{\substack{i=1 \\ 3 i \neq m \\(\bmod q)}}^{k-1} \frac{1}{\frac{-3 i}{m}+1} A_{\frac{-i}{m}},
$$

and $k \equiv \frac{m+2}{3}(\bmod q), 0 \leq k<q$.

Proof. By Lemma 2, for the coefficient d_{r}, where $g^{r} \equiv \pm 3(\bmod p)$, we get

$$
d_{r} \doteq=\sum_{0<i<\frac{p}{3}} A_{\frac{i}{m}} A_{\frac{3 i}{m}}+\sum_{\frac{p}{3}<i<\frac{p}{2}} A_{\frac{i}{m}} A_{\frac{3 i}{m}+1}
$$

Then we proceed similarly as in the proof of Lemma 3. The corresponding congruence will be obtained from the fact that $q \mid h^{+}$implies $d_{0} \equiv d_{r}(\bmod q)$, using the following results of $[8]$.

Theorem 3. Let q be an odd prime. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4), p \equiv-m(\bmod q)$, for $m=1,3,5, \ldots 2 q-3, m \equiv 0,2(\bmod 3)$ and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then the following holds:
(i) $m \equiv 0(\bmod 3), q \equiv 1(\bmod 3)$, then

$$
\frac{p+m+4 q}{2 q} \frac{3^{q-1}-1}{q} \equiv Q_{m+4 q, 3}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{-\frac{t}{m}}\right) \quad(\bmod q)
$$

where $t=\frac{4 q+m-1}{2}$.
(ii) $m \equiv 0(\bmod 3), q \equiv 2(\bmod 3)$, then

$$
\frac{p+m+2 q}{2 q} \frac{3^{q-1}-1}{q} \equiv Q_{m+2 q, 3}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{-\frac{t}{m}}\right) \quad(\bmod q)
$$

where $t=\frac{2 q+m-1}{2}$.
(iii) $m \equiv 2^{2}(\bmod 3), q \equiv 1(\bmod 3)$, then

$$
\frac{p+m+2 q}{2 q} \frac{3^{q-1}-1}{q} \equiv Q_{m+2 q, 3}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{-\frac{t}{m}}\right) \quad(\bmod q)
$$

where $t=\frac{2 q+m-1}{2}$.
(iv) $m \equiv 2(\bmod 3), q \equiv 2(\bmod 3)$, then

$$
\frac{p+m+4 q}{2 q} \frac{3^{q-1}-1}{q} \equiv Q_{m+4 q, 3}\left(A_{\frac{-1}{m}}, A_{\frac{-2}{m}}, \ldots, A_{-\frac{t}{m}}\right) \quad(\bmod q)
$$

where $t=\frac{4 q+m-1}{2}$.
Proof. (i) If $m \equiv 0(\bmod 3)$ and $q \equiv 1(\bmod 3)$, then because $p \equiv 2(\bmod 3)$ we have $p+m+4 q \equiv 0(\bmod 3)$ and the assertion (i) follows from Theorem 1 (i). Further we proceed analogously.

Lemma 2 of [8]. Let n, k be integers such that $n k \not \equiv 0(\bmod q)$. Then

$$
\sum_{\substack{i=1 \\ n i \neq-k(\bmod q)}}^{q-1} \frac{A_{i}}{n i+k} \equiv \frac{1}{n} B_{q-2}\left(\frac{k}{n}\right) \quad(\bmod q)
$$

Lemma 3 of [8]. Let n be an odd number. Then

$$
\begin{aligned}
\sum_{i=1}^{q-1} A_{i} A_{n i} \equiv & \equiv \frac{-1}{n^{2}}(n-2) B_{q-2}\left(\frac{1}{n}\right)+\frac{-1}{n^{2}}(n-4) B_{q-2}\left(\frac{2}{n}\right) \\
& +\cdots+\frac{-1}{n^{2}} B_{q-2}\left(\frac{\frac{n-1}{2}}{n}\right)-2-\frac{n^{q-1}-1}{q} \quad(\bmod q)
\end{aligned}
$$

By Lemma 2 of [8] we get

$$
\begin{gathered}
\sum_{i=1}^{q-1} A_{i} A_{n i+1} \equiv \sum_{i=1}^{q-1} A_{i} A_{n i}+\frac{1}{n} B_{q-2}\left(\frac{1}{n}\right) \quad(\bmod q) \\
\sum_{i=1}^{q-1} A_{i} A_{n i+2} \equiv \sum_{i=1}^{q-1} A_{i} A_{n i}+\frac{1}{n} B_{q-2}\left(\frac{1}{n}\right)+\frac{1}{n} B_{q-2}\left(\frac{2}{n}\right) \quad(\bmod q) \\
\vdots \\
\sum_{i=1}^{q-1} A_{i} A_{n i+\frac{n-1}{2}} \equiv \sum_{i=1}^{q-1} A_{i} A_{n i}+\frac{1}{n} B_{q-2}\left(\frac{1}{n}\right)+\frac{1}{n} B_{q-2}\left(\frac{2}{n}\right) \\
+\cdots+\frac{1}{n} B_{q-2}\left(\frac{\frac{n-1}{2}}{n}\right) \quad(\bmod q)
\end{gathered}
$$

Theorem 4. Let q be an odd prime. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4), p \equiv-m(\bmod q)$, for $m=1,3,5, \ldots, 2 q-3, m \equiv 3(\bmod 4)$, and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then the following holds:
(i) if $\frac{m+3}{2}<q$, then

$$
\frac{p+m}{2 q} \frac{4^{q-1}-1}{q}-\frac{1}{8} B_{q-2}\left(\frac{1}{4}\right) \equiv C_{m} \quad(\bmod q)
$$

(ii) if $\frac{m+3}{2} \geq q$, then

$$
\frac{p+m}{2 q} \frac{3^{q-1}-1}{q}+\frac{1}{8} B_{q-2}\left(\frac{1}{4}\right) \equiv C_{m} \quad(\bmod q)
$$

where

$$
C_{m}=\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}}^{2}-\sum_{i=1}^{\frac{m-1}{2}} A_{\frac{-i}{m}} A_{\frac{-4 i}{m}+1}+\sum_{\substack{i=1 \\ 4 i \neq m(\bmod q)}}^{k-1} \frac{1}{\frac{-4 i}{m}+1} A_{\frac{-i}{m}},
$$

and $k \equiv \frac{m+3}{4}(\bmod q), 0 \leq k<q$.
Proof. Analogous to the proof of Theorem 2.
To prove that q does not divide h^{+}for $p \equiv-1(\bmod q)$, the following Theorem 5 will be necessary.

Let j be an integer, $0<j<2 q, j \equiv 0(\bmod 2)$. Define the sums

$$
S_{j}=\sum_{i=1}^{\frac{q-1}{2}} A_{i} \sum_{\substack{k=1 \\ k=1 \\ 2 j i \neq-k(\bmod 2) \\ 2 j-1}}^{j-1} \frac{1}{2 j i+k}-\sum_{i=\frac{q+1}{2}}^{q-1} A_{i} \sum_{\substack{k=1 \\ k=1 \\ 2 j i \neq-k(\bmod 2) \\ 2 j \bmod q)}}^{j-1} \frac{1}{2 j i+k}
$$

Theorem 5. Let q be an odd prime. Let l, p be primes such that $p=2 l+1$, $l \equiv 3(\bmod 4), p \equiv-1(\bmod q)$, and let the order of the prime q modulo l be $\frac{l-1}{2}$. Suppose that for each j such that $S_{j} \equiv 0(\bmod q)$ there exists $n,(n, 2 q)=1, n \mid p+1$ such that $S_{j^{*}} \not \equiv 0(\bmod q)$, where $j^{*} \equiv n j(\bmod 2 q)$. Then q does not divide h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$.

Proof. Let $2^{v} \mid p+1$ and let 2^{v+1} not divide $p+1$. Let n be a divisor of $p+1$, $(n, 2 q)=1$. Denote $M=2^{v+1} n$. We shall compute the coefficient $d_{r}, r<l$ in (2), where $g^{r} \equiv \pm M(\bmod p)$. By Lemma 2 we have

$$
d_{r}=\sum_{0<i<\frac{p}{M}} A_{i} A_{M i}+\sum_{\frac{p}{M}<i<\frac{2 p}{M}} A_{i} A_{M i+1}+\ldots
$$

It implies that

$$
d_{r} \equiv S+\left(\frac{p+1}{q N}-\frac{1}{2}\right) \sum_{k=0}^{\frac{M}{2}-1} \sum_{i=1}^{q-1} A_{i} A_{M i+k} \quad(\bmod q)
$$

where

$$
\begin{gathered}
S=\sum_{i=1}^{\frac{q-1}{2}} A_{i} A_{M i}+\sum_{i=\frac{q+1}{2}}^{q-1} A_{i} A_{M i+1}+\sum_{i=1}^{\frac{q-1}{2}} A_{i} A_{M i+2}+\sum_{i=\frac{q+1}{2}}^{q-1} A_{i} A_{M i+3} \\
+\cdots+\sum_{i=1}^{\frac{q-1}{2}} A_{i} A_{M i+\frac{M}{2}-2}+\sum_{i=\frac{q+1}{2}}^{q-1} A_{i} A_{M i+\frac{M}{2}-1}
\end{gathered}
$$

Therefore

$$
S=\sum_{k=0}^{\frac{M}{4}-1} \sum_{i=1}^{q-1} A_{i} A_{M i+2 k}+\sum_{i=\frac{q+1}{2}}^{q-1} A_{i} \sum_{\substack{k=1 \\ k \equiv 1(\bmod 2) \\ M i \neq-k(\bmod q)}}^{\frac{M}{2}-1} \frac{1}{M i+k}
$$

By Lemma 2 of [8] and Lemma 3 of [8] we get

$$
\begin{aligned}
\sum_{k=0}^{\frac{M}{4}-1} \sum_{i=1}^{q-1} A_{i} A_{M i+2 k} \equiv & -\frac{M}{4}\left(2+\frac{M^{q-1}-1}{q}\right) \\
& -\frac{1}{2 M} \sum_{\substack{k=1 \\
k \equiv 1(\bmod 2)}}^{\frac{M}{2}-1} B_{q-2}\left(\frac{k}{M}\right) \quad(\bmod q)
\end{aligned}
$$

If $q \mid h^{+}$then $d_{r} \equiv d_{0}(\bmod q)$, hence
$S+\frac{p+1}{q}\left(1+\frac{1}{M} \sum_{k=0}^{\frac{M}{2}-1} \sum_{i=1}^{q-1} A_{i} A_{M i+k}\right)-\frac{1}{2} \sum_{k=0}^{\frac{M}{2}-1} \sum_{i=1}^{q-1} A_{i} A_{M i+k} \equiv-\frac{p+1}{q} \quad(\bmod q)$.
By [8] we have

$$
1+\frac{1}{M} \sum_{k=0}^{\frac{M}{2}-1} \sum_{i=1}^{q-1} A_{i} A_{M i+k} \equiv-\frac{1}{2} \frac{M^{q-1}-1}{q} \quad(\bmod q)
$$

The congruence

$$
-\frac{p+1}{2 q} \frac{M^{q-1}-1}{q}+\frac{M}{2}\left(\frac{1}{2} \frac{M^{q-1}-1}{q}+1\right)+S \equiv 0 \quad(\bmod q) .
$$

follows.

Substituting for S we get

$$
-\frac{p+1}{2 q} \frac{M^{q-1}-1}{q}+\sum_{i=\frac{q+1}{2}}^{q-1} A_{i} \sum_{\substack{k=1 \\ k \equiv 1(\bmod 2) \\ M i \neq-k(\bmod q)}}^{\frac{M}{2}-1} \frac{1}{M i+k} \equiv \frac{1}{2 M} \sum_{\substack{k=1 \\ k \equiv 1(\bmod 2)}}^{\frac{M}{2}-1} B_{q-2}\left(\frac{k}{M}\right) .
$$

By Theorem 1, $q \mid h^{+}$implies that

$$
\frac{p+1}{2 q} \frac{M^{q-1}-1}{q} \equiv 0 \quad(\bmod q)
$$

Therefore

$$
\sum_{i=\frac{q+1}{2}}^{q-1} A_{i} \sum_{\substack{k=1 \\ k \equiv 1(\bmod 2) \\ M i \neq-k(\bmod q)}}^{\frac{M}{2}-1} \frac{1}{M i+k} \equiv \frac{1}{2 M} \sum_{\substack{k=1 \\ k \equiv 1 \\(\bmod 2)}}^{\frac{M}{2}-1} B_{q-2}\left(\frac{k}{M}\right) \quad(\bmod q)
$$

By Lemma 2 of [8] and Lemma 3 of [8] we get

$$
\begin{equation*}
\sum_{i=\frac{q+1}{2}}^{q-1} A_{i} \sum_{\substack{k=1 \\ k \equiv 1(\bmod 2) \\ M i \neq-k(\bmod q)}}^{\frac{M}{2}-1} \frac{1}{M i+k} \equiv \sum_{i=1}^{\frac{q-1}{2}} A_{i} \sum_{\substack{k=1 \\ k=1 \\ M i \neq-k(\bmod 2) \\ 2}}^{\frac{M}{2}-1} \frac{1}{M i+k} \quad(\bmod q) \tag{4}
\end{equation*}
$$

Clearly

$$
\sum_{\substack{k=1 \\ k=1 \bmod 2) \\ M i \neq-k(\bmod q)}}^{2 q-1} \frac{1}{M i+k} \equiv 0 \quad(\bmod q)
$$

Therefore the congruence (4) can be rewritten as follows

$$
\sum_{\substack{i=\frac{q+1}{2}}}^{q-1} A_{i} \sum_{\substack{k=1 \\ k=1 \\ 2 j i \neq-k(\bmod 2) \\ 2 j \bmod q)}}^{j-1} \frac{1}{2 j i+k}-\sum_{i=1}^{\frac{q-1}{2}} A_{i} \sum_{\substack{k=1 \\ k=1 \\ 2 j i \neq-k(\bmod 2) \\ \bmod q)}}^{j-1} \frac{1}{2 j i+k} \equiv 0 \quad(\bmod q)
$$

where $j \equiv 2^{v} n(\bmod 2 q)$.
Let $2^{v} \mid p+1$ and let 2^{v+1} not divide $p+1$. If p runs through all primes of the form $2 l+1$, then the numbers $2^{v}(\bmod 2 q)$ run through the set $\{j \mid j=2,4,6, \ldots, 2 q-2\}$. If $S_{j} \not \equiv 0(\bmod q)$ for all $j=2,4,6, \ldots, 2 q-2$, then q does not divide h^{+}. Let $S_{j} \equiv 0(\bmod q)$ for some j. For this j there exists the corresponding coefficient $d_{r}, r<l$, where $g^{r} \equiv \pm 2^{v+1}(\bmod p)$. Consider the coefficient $d_{r^{\prime}}, r^{\prime}<l$, where $g^{r^{\prime}} \equiv \pm 2^{v+1} n(\bmod q), n \mid p+1,(n, 2 q)=1$. If $q \mid h^{+}$, then $d_{r} \equiv d_{r^{\prime}} \equiv d_{0}(\bmod q)$. Hence $S_{j^{*}} \equiv 0(\bmod q)$, where $j^{*} \equiv n j(\bmod 2 q)$. Theorrem 5 is proved.

Theorem 6. Let q be an odd prime. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4), p \equiv-1(\bmod q)$, the order of the prime q modulo l be $\frac{l-1}{2}$ and let the congruence $2^{q-1} \equiv 3^{q-1} \equiv 1\left(\bmod q^{2}\right)$ not hold.

Suppose that q divides h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$. Then for each $k,(k, q)=1$, the following congruence holds:

$$
k \frac{k^{q-1}-1}{q} \equiv Q_{1+2 k q, \frac{p}{2 q}}\left(A_{-1}, A_{-2}, \ldots, A_{-t}\right) \quad(\bmod q)
$$

where $t=k q$.
Proof. By Theorem 1 (i) put $n=\frac{p+1+2 k q}{2 q}=\frac{p+1}{2 q}+k$ If $q \mid h^{+}$, then similarly as in the proof of Corollary 1 we get $\frac{p+1}{2 q} \equiv 0\left(\bmod q^{2}\right)$ and hence $n \equiv k\left(\bmod q^{2}\right)$. Clearly $n=\frac{p+1+2 k q}{2 q} \equiv \frac{p}{2 q}(\bmod 1+2 k q)$ and Theorem 6 is proved.
Theorem 7. Let q be prime, $q \leq 23$. Let l, p be primes such that $p=2 l+1, l \equiv 3$ $(\bmod 4)$, and let the order of the prime q modulo l be $l-1$ or $\frac{l-1}{2}$. The prime q does not divide h^{+}, the class number of the real cyclotomic field $\mathbf{Q}\left(\zeta_{p}+\zeta_{p}^{-1}\right)$.
Proof. If the order of q modulo l is $l-1$, then q does not divide h^{+}by [1] and [3]. Suppose that the order of q modulo l is $\frac{l-1}{2}$. For $q=2,3,5$, Theorem 7 was proved in the papers [2],[5],[6].

Now we shall prove that q does not divide h^{+}for $q=7,11,13,17,19,23$.
Let $p \equiv-1(\bmod q)$. By a computation we get that $S_{j} \equiv 0(\bmod q)$ if and only if either $j=q-1$ or $j=q+1$. Since $3 \mid p+1$, by Theorem 5 we get that q does not divide h^{+}. On the basis of the Remark after Corollary 2, the case $m=5$ need not be considered.

I. Case $q=7$

By the assumption of Theorem 1, we have that the order of q modulo l is $\frac{l-1}{2}$. Therefore

$$
1=\left(\frac{7}{l}\right)=-\left(\frac{l}{7}\right)
$$

Since $l \equiv 3,5,6(\bmod 7)$, then $p=2 l+1 \equiv 4,6(\bmod 7)$. Therefore $m=1,3$, i.e. either $p \equiv-1(\bmod 7)$ or $p \equiv-3(\bmod 7)$.

For $p \equiv-3(\bmod 7)$ by Corollary 1 we get

$$
\frac{p+3}{14} \frac{2^{6}-1}{7} \equiv 0 \quad(\bmod 7)
$$

By Theorem 2, I,(i) we have

$$
\frac{p+3}{14} \frac{3^{6}-1}{7}+\frac{1}{9} B_{5}\left(\frac{1}{3}\right) \equiv C_{3} \quad(\bmod 7) .
$$

By computation,

$$
\frac{3^{6}-1}{7} \equiv 6 \quad(\bmod 7), C_{3} \equiv 6 \quad(\bmod 7), B_{5}\left(\frac{1}{3}\right) \equiv 6 \quad(\bmod 7)
$$

Hence

$$
6 \frac{p+3}{14}+\frac{6}{9} \equiv 6 \quad(\bmod 7)
$$

which is a contradiction

$$
\frac{p+3}{14} \frac{2^{6}-1}{7} \equiv 0 \quad(\bmod 7)
$$

II. Case $q=11$

Analogously for $q=7$ we get $m=1,5,7,9,17$.

1. $m=7, p \equiv-7(\bmod 11)$.

By Corollary 3, if $11 \mid h^{+}$, then

$$
\left(\sum_{\frac{11}{7}<i<\frac{22}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{22}{7}<i<\frac{33}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{11}{7}<i<\frac{22}{7}} \frac{1}{i}\right)\left(\sum_{\frac{22}{7}<i<\frac{33}{7}} \frac{1}{i}\right) \equiv 0(\bmod 11)
$$

By computation, we get that this sum is $10^{2}+3^{2}+3.10 \equiv 7(\bmod 11)$, therefore 11 does not divide h^{+}.
2. $m=9, p \equiv-9(\bmod 11)$.

By Corollary 6, we have

$$
\begin{gathered}
\left(\sum_{\frac{11}{9}<i<\frac{22}{9}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{22}{9}<i<\frac{44}{9}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{11}{9}<i<\frac{22}{9}} \frac{1}{i}\right)\left(\sum_{\frac{22}{q}<i<\frac{44}{9}} \frac{1}{i}\right) \\
\equiv 6^{2}+7^{2}+6.7 \equiv 6 \quad(\bmod 11) .
\end{gathered}
$$

Therefore 11 does not divide h^{+}.
3. $m=17, p \equiv-17(\bmod 11)$.

By Corollary 8 , it is enough to prove that

$$
Q_{17,4}\left(A_{\frac{-1}{17}}, A_{\frac{-2}{17}}, A_{\frac{-3}{17}}, A_{\frac{-4}{17}}, A_{\frac{-5}{17}}, A_{\frac{-6}{17}}, A_{\frac{-7}{17}}, A_{\frac{-8}{17}}\right) \not \equiv 0 \quad(\bmod 11) .
$$

By computation we have

$$
Q_{17,4}\left(A_{\frac{-1}{17}}, A_{\frac{-2}{17}}, A_{\frac{-3}{17}}, A_{\frac{-4}{17}}, A_{\frac{-5}{17}}, A_{\frac{-6}{17}}, A_{\frac{-7}{17}}, A_{\frac{-8}{17}}\right) \equiv 3 \quad(\bmod 11),
$$

therefore 11 does not divide h^{+}.

III. Case $q=13$

In this case we have $m=1,5,7,17,19,23$.

1. $m=7, p \equiv-7(\bmod 13)$. By Corollary 3 ,

$$
\begin{gathered}
\left(\sum_{\frac{13}{7}<i<\frac{26}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{26}{7}<i<\frac{39}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{13}{7}<i<\frac{26}{7}} \frac{1}{i}\right)\left(\sum_{\frac{26}{7}<i<\frac{39}{7}} \frac{1}{i}\right) \\
\equiv 3^{2}+5^{2}+3.5 \equiv 10 \quad(\bmod 13),
\end{gathered}
$$

therefore 13 does not divide h^{+}.
2. $m=17, p \equiv-17(\bmod 13)$.

By computation, using Corollary 8, we get that
$A_{1}=1, A_{2}=8, A_{3}=4, A_{4}=1, A_{5}=9, A_{6}=7, A_{7}=9, A_{8}=1, A_{9}=4, A_{10}=$ $8, A_{11}=1, A_{12}=0$.

For the permutation $\phi_{17,2}$ we have

$$
\phi_{17,2}=\left(\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 4 & 6 & 8 & 7 & 5 & 3 & 1
\end{array}\right)
$$

hence

$$
Q_{17,2}\left(X_{1}, X_{2}, \ldots, X_{8}\right)=X_{1}^{2}+X_{2}^{2}+\cdots+X_{8}^{2}-\left(X_{1} X_{2}+X_{2} X_{4}+\cdots+X_{8} X_{1}\right)
$$

By computation modulo 13 we get
$A_{\frac{-1}{17}}=A_{3}=4, A_{\frac{-2}{17}}=A_{6}=7, A_{\frac{-3}{17}}=A_{9}=4, A_{-\frac{4}{17}}=A_{12}=0, A_{\frac{-5}{17}}=A_{2}=$ $8, A_{\frac{-6}{17}}=A_{5}=9, A_{\frac{-7}{17}}=A_{8}=1, A_{\frac{-8}{17}}=A_{11}=1$.

Hence

$$
Q_{17,2}(4,7,4,0,8,9,1,1) \equiv 11 \quad(\bmod 13)
$$

therefore 13 does not divide h^{+}.
3. $m=19, p \equiv-19(\bmod 13)$.

By Corollary 9 we have that

$$
Q_{19,2}(8,1,7,1,8,0,1,4,9) \equiv 6 \quad(\bmod 13)
$$

therefore 13 does not divide h^{+}.
4. $m=23, p \equiv-23(\bmod 13)$.

By Theorem 1 (i), putting $n=2$, we get

$$
\frac{p+23}{26} \frac{2^{12}-1}{13} \equiv Q_{23,2}\left(A_{\frac{-1}{23}}, \ldots, A_{\frac{-11}{23}}\right) \quad(\bmod 13)
$$

By computation we have

$$
\frac{p+23}{26} \equiv 1 \quad(\bmod 13) .
$$

Further we proceed using Theorem 2, III, (iii). The congruence (iii) can be rewritten as

$$
\frac{p+m}{2 q} \frac{3^{q-1}-1}{q} \equiv-\frac{1}{9} B_{q-2}\left(\frac{1}{3}\right)+\frac{3^{q-1}-1}{q}-A_{\frac{-1}{3}}+\sum_{i=1}^{\frac{q-4}{3}} \frac{1}{1+i} A_{\frac{i}{3}} \quad(\bmod q)
$$

By substitution $m=23, q=13$ and by computation we get $\frac{3^{12}-1}{13} \equiv 8(\bmod 13)$, $B_{11}\left(\frac{1}{3}\right) \equiv 7(\bmod 13), A_{\frac{-1}{3}}=A_{4}=1, \sum_{i=1}^{3} \frac{1}{1+i} A_{\frac{i}{3}} \equiv 2(\bmod 13)$.

This implies the congruence

$$
8 \frac{p+23}{26} \equiv 1 \quad(\bmod 13)
$$

which is a contradiction with the congruence

$$
\frac{p+23}{26} \equiv 1 \quad(\bmod 13)
$$

The case III, $q=13$ is solved.
IV. Case $q=17$

By computation we get that the corresponding values of m are $m=1,3,7,15,25$, 29, 31 .

1. $m=3, p \equiv-3(\bmod 17)$.

By Theorem 1 (i) and Theorem 2 I .(ii), the following congruences hold:

$$
\begin{gathered}
\frac{p+3}{34} \frac{2^{16}-1}{17} \equiv 0 \quad(\bmod 17) \\
\frac{p+3}{34} \frac{3^{16}-1}{17}+\frac{2}{9} B_{15}\left(\frac{1}{3}\right) \equiv C_{3} \quad(\bmod 17),
\end{gathered}
$$

where

$$
C_{3}=A_{11}^{2}+\sum_{i=2}^{12} \frac{1}{1-i} A_{\frac{-1}{3}} .
$$

By computation we get that $C_{3}=5, B_{15}\left(\frac{1}{3}\right) \equiv 8(\bmod 17)$. Therefore

$$
\begin{gathered}
10 \frac{p+3}{34} \equiv 7 \quad(\bmod 17) \\
\frac{p+3}{34} \frac{2^{16}-1}{17} \equiv 0 \quad(\bmod 17)
\end{gathered}
$$

-a contradiction.

2. $m=7, p \equiv-7(\bmod 17)$.

By Corollary 3 it is enough to prove that

$$
\left(\sum_{\frac{17}{7}<i<\frac{34}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{34}{7}<i<\frac{51}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{17}{7}<i<\frac{34}{7}} \frac{1}{i}\right)\left(\sum_{\frac{34}{7}<i<\frac{51}{7}} \frac{1}{i}\right) \not \equiv 0(\bmod 17) .
$$

3. $m=15, p \equiv-15(\bmod 17)$.

In this case by Theorem 1 (i) we have

$$
\frac{p+15}{34} \frac{2^{16}-1}{17} \equiv Q_{15,2}\left(A_{\frac{-1}{15}}, \ldots, A_{\frac{-7}{15}}\right) \quad(\bmod 17)
$$

By computation we get

$$
\frac{p+15}{34} \frac{2^{16}-1}{17} \equiv Q_{15,2}(10,1,5,10,2,16,12) \quad(\bmod 17)
$$

hence

$$
13 \frac{p+15}{34} \equiv 2 \quad(\bmod 17)
$$

By Theorem 2 I, (i) we have

$$
10 \frac{p+15}{34} \equiv 7 \quad(\bmod 17)
$$

-a contradiction.
4. $m=25, p \equiv-25(\bmod 17)$.

By Corollary 10, it is enough to prove that

$$
Q_{25,2}(10,12,5,8,5,12,10,0,1,16,2,10) \not \equiv 0 \quad(\bmod 17)
$$

By computation we get

$$
Q_{25,2}(10,12,5,8,5,12,10,0,1,16,2,10) \equiv 6 \quad(\bmod 17)
$$

5. $m=29, p \equiv-29(\bmod 17)$.

By Theorem 1 (i) we have

$$
\begin{aligned}
& \frac{p+29}{34} \frac{2^{16}-1}{17} \equiv Q_{29,2}\left(A_{\frac{-1}{29}}, \ldots, A_{\frac{-14}{29}}\right) \quad(\bmod 17), \\
& \frac{p+29}{34} \frac{4^{16}-1}{17} \equiv Q_{29,2}\left(A_{\frac{-1}{29}}, \ldots, A_{\frac{-14}{29}}\right) \quad(\bmod 17) .
\end{aligned}
$$

By computation we get

$$
\begin{aligned}
13 \frac{p+29}{34} & \equiv 11 \quad(\bmod 17), \\
9 \frac{p+29}{34} & \equiv 8 \quad(\bmod 17)
\end{aligned}
$$

-a contradiction.
6. $m=31, p \equiv-31(\bmod 17)$.

By Theorem 1 (i) we have

$$
\begin{aligned}
& \frac{p+31}{34} \frac{2^{16}-1}{17} \equiv Q_{31,2}\left(A_{\frac{-1}{31}}, \ldots, A_{\frac{-15}{31}}\right) \quad(\bmod 17), \\
& \frac{p+31}{34} \frac{3^{16}-1}{17} \equiv Q_{31,3}\left(A_{\frac{-1}{31}}, \ldots, A_{\frac{-15}{31}}\right) \quad(\bmod 17) .
\end{aligned}
$$

By computation we get two congruences

$$
\begin{aligned}
& \frac{p+31}{34} \frac{2^{16}-1}{17} \equiv 13 \quad(\bmod 17) \\
& \frac{p+31}{34} \frac{3^{16}-1}{17} \equiv 13 \quad(\bmod 17)
\end{aligned}
$$

-a contradiction.

V. Case $q=19$

By computation we get that $m=1,7,9,11,13,17,21,31,33$.

1. $m=7, p \equiv-7(\bmod 19)$.

By Corollary 3 it is enough to prove

By computation we have that the left side is equal to $13(\bmod 19)$.
2. $m=9, p \equiv-9(\bmod 19)$.

By Corollary 6 it is enough to prove that

$$
\left(\sum_{\frac{19}{9}<i<\frac{38}{9}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{38}{9}<i<\frac{76}{9}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{19}{9}<i<\frac{38}{9}} \frac{1}{i}\right)\left(\sum_{\frac{38}{9}<i<\frac{76}{9}} \frac{1}{i}\right) \not \equiv 0 \quad(\bmod 19) .
$$

By computation we have that the left side is equal to $2(\bmod 19)$.
3. $m=11, p \equiv-11(\bmod 19)$.

By Theorem 1 (i) we have

$$
\frac{p+11}{38} \frac{2^{18}-1}{19} \equiv Q_{11,2}\left(A_{\frac{-1}{11}}, \ldots A_{\frac{-5}{11}}\right) \quad(\bmod 19)
$$

By computation we get that

$$
Q_{11,2}\left(A_{\frac{-1}{11}}, \ldots, A_{\frac{-5}{11}}\right) \equiv Q_{11,2}(11,14,1,15,5) \equiv 15 \quad(\bmod 19) .
$$

By Theorem 2 II, (ii) we have

$$
\frac{p+11}{38} \frac{3^{18}-1}{19}+\frac{2}{9} B_{17}\left(\frac{1}{3}\right) \equiv C_{11} \quad(\bmod 19)
$$

where

$$
C_{11}=\sum_{i=1}^{5} A_{\frac{-i}{11}}-\sum_{i=1}^{5} A_{\frac{-1}{11}} A_{\frac{-3}{11}+1}+\sum_{i=1}^{16} \frac{1}{\frac{-3 i}{11}+1} A_{\frac{-i}{11}} \equiv 17 \quad(\bmod 19)
$$

$$
B_{17}\left(\frac{1}{3}\right) \equiv 13 \quad(\bmod 19)
$$

Therefore

$$
\begin{aligned}
3 \frac{p+11}{38} & \equiv 15 \quad(\bmod 19) \\
18 \frac{p+11}{38} & \equiv 12 \quad(\bmod 19)
\end{aligned}
$$

-a contradiction.
4. $m=13, p \equiv-13(\bmod 19)$.

By Corollary 7 it is enough to prove

$$
Q_{13,2}\left(A_{\frac{-1}{13}}, \ldots, A_{\frac{-6}{13}}\right) \not \equiv 0 \quad(\bmod 19)
$$

But

$$
Q_{13,2}(11,14,15,3,10,1) \equiv 3 \quad(\bmod 19)
$$

5. $m=17, p \equiv-17(\bmod 19)$.

By Corollary 8 it is enough to prove

$$
Q_{17,2}\left(A_{\frac{-1}{17}}, \ldots, A_{\frac{-8}{17}}\right) \not \equiv 0 \quad(\bmod 19),
$$

but

$$
Q_{17,2}(15,1,3,11,11,5,14,10) \equiv 18 \quad(\bmod 19)
$$

6. $m=21, p \equiv-21(\bmod 19)$.

By Theorem 1 (i) we have

$$
\begin{aligned}
& \frac{p+21}{38} \frac{2^{18}-1}{19} \equiv Q_{21,2}\left(A_{\frac{-1}{21}}, \ldots, A_{\frac{-10}{21}}\right) \quad(\bmod 19) \\
& \frac{p+21}{38} \frac{4^{18}-1}{19} \equiv Q_{21,4}\left(A_{\frac{-1}{21}}, \ldots, A_{\frac{-10}{21}}\right) \quad(\bmod 19)
\end{aligned}
$$

By computation we get

$$
\begin{gathered}
Q_{21,2}(13,0,15,1,3,11,11,5,10) \equiv 4 \quad(\bmod 19) \\
Q_{21,4}(13,0,15,1,3,11,11,5,14,10) \equiv 3 \quad(\bmod 19)
\end{gathered}
$$

which gives a contradiction.
7. $m=31, p \equiv-31(\bmod 19)$.

By Theorem 1 (i) we have

$$
\begin{gathered}
\frac{p+31}{38} \frac{2^{18}-1}{19} \equiv Q_{31,2}\left(A_{\frac{-1}{31}}, \ldots, A_{\frac{-15}{31}}\right) \quad(\bmod 19), \\
\frac{p+31}{38} \frac{3^{18}-1}{19} \equiv Q_{31,3}\left(A_{\frac{-1}{31}}, \ldots, A_{\frac{-15}{31}}\right) \quad(\bmod 19), \\
Q_{31,2}(3,5,10,11,1,13,1,11,10,5,3,0,15,11,14) \equiv 4 \quad(\bmod 19), \\
Q_{31,3}(3,5,10,11,1,13,1,11,10,5,3,0,15,11,14) \equiv 3 \quad(\bmod 19) .
\end{gathered}
$$

By computation we get

$$
3 \frac{p+31}{38} \equiv 3 \quad(\bmod 19)
$$

$$
18 \frac{p+31}{38} \equiv 7 \quad(\bmod 19)
$$

-a contradiction.
8. $m=33, p \equiv-33(\bmod 19)$.

By Theorem 1 (i) we have

$$
\begin{aligned}
& \frac{p+33}{38} \frac{2^{18}-1}{19} \equiv Q_{33,2}\left(A_{\frac{-1}{33}}, \ldots, A_{\frac{-16}{33}}\right) \quad(\bmod 19), \\
& \frac{p+33}{38} \frac{4^{18}-1}{19} \equiv Q_{33,2}\left(A_{\frac{-1}{33}}, \ldots, A_{\frac{-16}{33}}\right) \quad(\bmod 19) .
\end{aligned}
$$

By computation we get

$$
\begin{aligned}
& Q_{33,2}(10,15,11,11,1,14,13,14,1,11,11,15,10,0,5,3) \equiv 18 \quad(\bmod 19) \\
& Q_{33,4}(10,15,11,11,1,14,13,14,1,11,11,15,10,0,5,3) \equiv 1 \quad(\bmod 19)
\end{aligned}
$$

-a contradiction.

VI. Case $q=23$

The possible values for m are $m=1,3,5,7,11,15,17,25,31,35$.

1. $m=3, p \equiv-3(\bmod 23)$.

By Theorem 1 (i) we have

$$
\frac{p+3}{46} \frac{2^{22}-1}{23} \equiv 0 \quad(\bmod 23)
$$

By Theorem 2 I.(ii) we get

$$
\frac{p+3}{46} \frac{3^{22}-1}{23}+\frac{2}{9} B_{21}\left(\frac{1}{3}\right) \equiv C_{3} \quad(\bmod 23)
$$

By computation we obtain that $C_{3} \equiv 19(\bmod 23), B_{21}\left(\frac{1}{3}\right) \equiv 13(\bmod 23),-\mathrm{a}$ contradiction.
2. $m=7, p \equiv-7(\bmod 23)$.

By Corollary 3 it is enough to prove

$$
\left(\sum_{\frac{23}{7}<i<\frac{46}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{46}{7}<i<\frac{69}{7}} \frac{1}{i}\right)^{2}+\left(\sum_{\frac{23}{7}<i<\frac{46}{7}} \frac{1}{i}\right)\left(\sum_{\frac{46}{7}<i<\frac{69}{7}} \frac{1}{i}\right) \not \equiv 0(\bmod 23)
$$

By computation we get that the sum is different from zero ($\bmod 23$).
3. $m=11, p \equiv-11(\bmod 23)$.

By Theorem 2 II.(i) we have

$$
\frac{p+11}{46} \frac{3^{22}-1}{23}+\frac{1}{9} B_{21}\left(\frac{1}{3}\right) \equiv C_{11} \quad(\bmod 23)
$$

where

$$
C_{11}=\sum_{i=1}^{5} A_{\frac{-i}{11}}-\sum_{i=1}^{5} A_{\frac{-1}{11}} A_{\frac{-3}{11}+1}+\sum_{i=1}^{11} \frac{1}{\frac{-3 i}{11}+1} A_{\frac{-i}{11}} \equiv 3 \quad(\bmod 23) .
$$

Hence

$$
\frac{p+11}{46} \frac{3^{22}-1}{23} \equiv 22 \quad(\bmod 23)
$$

By Theorem 1 (i) we have

$$
\frac{p+11}{46} \frac{2^{22}-1}{23} \equiv Q_{11,2}\left(A_{\frac{-1}{11}}, \ldots A_{\frac{-5}{11}}\right) \quad(\bmod 23)
$$

Therefore

$$
\begin{aligned}
& \frac{p+11}{38} \frac{2^{18}-1}{19} \equiv 17 \quad(\bmod 23) \\
& \frac{p+11}{46} \frac{3^{22}-1}{23} \equiv 22 \quad(\bmod 23)
\end{aligned}
$$

-a contradiction.
4. $m=15, p \equiv-15(\bmod 23)$.

By Theorem 1 (i) we have

$$
\frac{p+15}{46} \frac{2^{22}-1}{23} \equiv Q_{15,2}\left(A_{\frac{-1}{15}}, \ldots A_{\frac{-7}{15}}\right) \equiv 4 \quad(\bmod 23)
$$

By Theorem 2 I.(ii)

$$
\frac{p+15}{46} \frac{3^{22}-1}{23}+\frac{2}{9} B_{21}\left(\frac{1}{3}\right) \equiv C_{15} \quad(\bmod 23)
$$

By computation we get a contradiction.
5. $m=17, p \equiv-17(\bmod 23)$.

By Corollary 8 it is enough to prove

$$
\begin{array}{ll}
Q_{17,4}\left(A_{\frac{-1}{17}}, \ldots, A_{\frac{-8}{17}}\right) \not \equiv 0 & (\bmod 23) \\
Q_{17,4}\left(A_{\frac{-1}{17}}, \ldots, A_{\frac{-8}{17}}\right) \equiv 8 & (\bmod 23)
\end{array}
$$

6. $m=25, p \equiv-25(\bmod 23)$.

By Corollary 10 it is enough to prove

$$
\begin{aligned}
& Q_{25,4}\left(A_{\frac{-1}{25}}, \ldots, A_{\frac{-12}{25}}\right) \not \equiv 0 \quad(\bmod 23) \\
& Q_{25,4}\left(A_{\frac{-1}{25}}, \ldots, A_{\frac{-12}{25}}\right) \equiv 11 \quad(\bmod 23)
\end{aligned}
$$

7. $m=31, p \equiv-31(\bmod 23)$.

By Theorem 1 (i) we have

$$
\begin{aligned}
& \frac{p+31}{46} \frac{2^{22}-1}{23} \equiv Q_{31,2}\left(A_{\frac{-1}{31}}, \ldots A_{\frac{-15}{31}}\right) \equiv 13 \quad(\bmod 23) \\
& \frac{p+31}{46} \frac{3^{22}-1}{23} \equiv Q_{31,2}\left(A_{\frac{-1}{31}}, \ldots A_{\frac{-15}{31}}\right) \equiv 15 \quad(\bmod 23)
\end{aligned}
$$

-a contradiction.
8. $m=35, p \equiv-35(\bmod 23)$.

By Theorem 2 II. (i) we have

$$
\frac{p+35}{46} \frac{3^{22}-1}{23}+\frac{1}{9} B_{21}\left(\frac{1}{3}\right) \equiv C_{35} \quad(\bmod 23)
$$

by computation we get the congruence

$$
\frac{p+15}{46} \frac{3^{22}-1}{23} \equiv 10 \quad(\bmod 23)
$$

By Theorem 1 (i) we have

$$
\frac{p+35}{46} \frac{2^{22}-1}{23} \equiv Q_{35,2}\left(A_{\frac{-1}{35}}, \ldots A_{\frac{-17}{35}}\right) \equiv 0 \quad(\bmod 23)
$$

-a contradiction. Theorem 7 is proved.
Now we give the values of j such that $S_{j} \equiv 0(\bmod q)$ for $q \leq 173$ (see Theorem 5)

1. $q=29, j=4,28,30,54$
2. $q=31, j=30,32$
3. $q=37, j=36,38$
. $q=41, j=40,42$
. $q=43, j=34,42,44,52$
. $q=47, j=46,48$
. $q=53, j=14,48,52,54,58,92$
. $q=61, j=36,60,62,86$
4. $q=67, j=66,68$
5. $q=71, j=70,72$
6. $q=73, j=72,74$
7. $q=79, j=78,80$
8. $q=83, j=82,84$
9. $q=89, j=88,90$
10. $q=97, j=96,98$
11. $q=101, j=38,100,102,164$
12. $q=103, j=102,104$
13. $q=107, j=68,92,106,108,122,146$
14. $q=109, j=108,110$
15. $q=113, j=112,114$
16. $q=127, j=12,26,116,126,128,138,228,242$
17. $q=131, j=130,132$
18. $q=137, j=76,80,136,138,194,198$
19. $q=139, j=56,138,140,222$
20. $q=149, j=2,126,148,150,172,196$
21. $q=151, j=84,150,152,218$
22. $q=157, j=12,156,158,302$
23. $q=163, j=162,164$
24. $q=167, j=166,168$
25. $q=173, j=80,172,174,266$

By Theorem 5, putting $n=3$, we obtain that q does not divide h^{+}for $q \leq 173$.
By computation it was verified that the assumption of Theorem 5 (putting $n=3$) is satisfied for all $q \leq 857$.

Acknowledgement

The author thanks the referee of this article for the important suggestions and for the short proof of Lemma 1.

REFERENCES

[1] D. Davis, Computing the number of totally positive circular units which are squares, J. Number Theory 10 (1978), p. 1-9. MR 57:16254
[2] D.R. Estes, On the parity of the class number of the field of q-th roots of unity, The Rocky Mountain J. of Math. 19 (1989), p.675-681. MR 92b:11078
[3] A. Granville and Zhi-Wei Sun, Values of Bernoulli Polynomials, Pacific Journal of Mathematics, Vol. 172 No. 1, (1996) 117-137. CMP 96:09
[4] S. Jakubec, On divisibility of class number or real Abelian fields of prime conductor, Abh. Math. Sem. Univ. Hamburg 63 (1993), p. 67-86. MR 95a:11098
[5] S.Jakubec, On divisibility of h^{+}by the prime 3. The Rocky Mountain J. of Math, Volume 24, Number 4 (1994) 1467-1473. MR 95m:11119
[6] S. Jakubec, On divisibility of h^{+}by the prime 5. Math. Slovaca 44,5,(1994) 650-700. MR 96f:11140
[7] S. Jakubec, Connection between Wiefferich congruence and divisibility of h^{+}. Acta Arithmetica 71.1 (1995) 55-64. MR 96e:11138
[8] S. Jakubec, Connection between congruences $n^{q-1} \equiv 1\left(\bmod q^{2}\right)$ and divisibility of h^{+}, Abh. Math. Sem. Univ. Hamburg 66 (1996) 151-158. CMP 97:03
[9] P.L. Montgomery, New solutions of $a^{p-1} \equiv 1\left(\bmod p^{2}\right)$, Math. Comp. 61 (1993), 361-363. MR 94d:11003
[10] L.C. Washington, Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982. MR 85g:11001
[11] Zhi-Mong Sun and Zhi-Wei Sun, Fibonacci numbers and Fermat's Last theorem, Acta Arith. 60 (1992), 371-388. MR 93e:11025

Mathematical Institute of the Slovak Academy of Sciences, Štefánikova 49, 81473 Bratislava, Slovakia

E-mail address: jakubec@mau.savba.sk

